SOLUTION

Math Test

Section - A

Q1.
(i) The reflection of point P is $\mathrm{P}^{\prime}(-3,2)$ in the x -axis is

Therefore point P is $(-3,-2)$.
(ii) Let AB is diameter

A $(2,3)$
Centre C $(-2,5)$
Let $\mathrm{B}(\mathrm{a}, \mathrm{b})$

$\therefore \quad \mathrm{C}$ is centre of AB
By mid point formula

By mid point formula:

$$
\begin{array}{ll}
x=\frac{x_{1}+x_{2}}{2} & y=\frac{y_{1}+y_{2}}{2} \\
-2=\frac{2+a}{2} & 5=\frac{3+b}{2} \\
-4=2+a & 10-3=b \\
a=-6 & b=7
\end{array}
$$

Therefore coordinate of $B(-6,7)$
(iii) Given that: $\theta=45$ and $\mathrm{C}=-3$

$$
\mathrm{m}=\tan 45^{\circ}=1
$$

Equation of slope intercepts form $y=m x+c$

$$
\begin{aligned}
& y=1 \times x+(-3) \\
& y=x-3 \\
& x-y-3=0
\end{aligned}
$$

(iv) In the given figure ' O ' is centre of circle

(angle in a semicircle is 90°)
$\angle \mathrm{ADB}=\angle \mathrm{ACB}$ (= Angle in same segment are equal)
$\angle \mathrm{ADB}=2 \mathrm{x}$
In $\triangle \mathrm{ADB}$,
$2 \mathrm{x}+3 \mathrm{x}+90=180^{\circ}$
$5 x+90=180$
$5 \mathrm{x}=180-90$
$5 \mathrm{x}=90$
$\mathrm{x}=90 / 5$
$\mathrm{x}=18^{\circ}$
(v) Given that

Radius $=\frac{r}{2}$
Slant height $=2 \ell$
The total surface area of cone is :

$$
\begin{aligned}
& \pi r(\ell+r) \\
= & \pi \frac{r}{2}\left(2 \ell+\frac{r}{2}\right) \\
= & \pi \frac{r}{\not 2} \not 2\left(\ell+\frac{r}{4}\right) \\
= & \pi r\left(\ell+\frac{r}{4}\right)
\end{aligned}
$$

(vi) $\tan ^{2} \theta-\sin ^{2} \theta$
$\frac{\sin ^{2} \theta}{\cos ^{2} \theta}-\sin ^{2} \theta \quad\left(\because \tan ^{2} \theta=\frac{\sin ^{2} \theta}{\cos ^{2} \theta}\right)$
$\sin ^{2} \theta\left(\frac{1}{\cos \theta}-1\right)$
$\sin ^{2} \theta\left(\frac{1-\cos ^{2} \theta}{\cos ^{2} \theta}\right) \quad\left(\because 1-\cos ^{2} \theta=\sin ^{2} \theta\right)$
$=\frac{\sin ^{2} \theta}{\cos ^{2} \theta}\left(\sin ^{2} \theta\right)$
$=\tan ^{2} \theta \sin ^{2} \theta$
(vii) If $\sec \theta+\tan \theta=k$, then the $\sec \theta-\tan \theta=$?
$\because \quad \sec ^{2} \theta-\tan ^{2} \theta=1$
$(\sec \theta+\tan \theta)(\sec \theta-\tan \theta)=1$
$\mathrm{k}(\sec \theta-\tan \theta)=1$
$\sec \theta-\tan \theta=\frac{1}{k}$
(viii) In the given diagram :

$\tan 60^{\circ}=\frac{P M}{O P}$
$\sqrt{3}=\frac{h}{15}$
$h=15 \sqrt{3}$
(ix) In the given diagram the maximum frequency class is (40-50), so the mode from the given option is 40 which comes between this range.
(x) Lakshmi tossed two coins three time so the possible outcomes are 4
\{HH, HT, TH, TT $\}$
The favourable event atmost one head $\{\mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}=3$
$\because P(E)=\frac{3}{4}$

Section - B

Q2.
(i) (a) The image of point P in the origin is $\mathrm{P}^{1}(-4,-3)$. So the coordinates of P is $(4,3)$.

(b) Image of point P in the line $y=-2$ which is parallel to x-axis is :
$P^{\prime \prime}(4,-3+2 a)$
P" $(4,-3+2(-2)$
P" (4, -3-4)
P" $(4,-7)$
(ii) Let coordinate of $\mathrm{A}(\mathrm{a}, 0)$
and coordinate $\mathrm{B}(0,6)$
$\mathrm{m}_{1}: \mathrm{m}_{2}=2: 3$

By Section Formula :
$x=\frac{m_{1} x_{2}+m_{2} y_{2}}{m_{1}+m_{2}} \quad y=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}$
$-3=\frac{2 \times 0+3 \times 4}{2+3}$
$4=\frac{2 \times b+3(0)}{2+3}$
$-3=\frac{3 a}{5}$
$4=\frac{2 b}{5}$
$-15=3 a$
$20=2 b$

$$
\begin{array}{ll}
a=\frac{-15}{3} & b=\frac{20}{2} \\
a=-5 & b=10
\end{array}
$$

Therefore coordinates of $\mathrm{A}(-5,0)$ and B is $(0,10)$.
(iii) In the given figure:

O is centre of circle

$$
\angle \mathrm{PBA}=42^{\circ}
$$

and $\angle \mathrm{APB}=90^{\circ}$
(\because angle in a semicircle is 90°)
In $\triangle \mathrm{APB}$
$42^{\circ}+90+\angle \mathrm{PAB}=180^{\circ}$
$132+\angle \mathrm{PAB}=180$
$\angle \mathrm{PAB}=180-132$
$\angle \mathrm{PAB}=48^{\circ}$
$\angle \mathrm{BQP}=\angle \mathrm{PAB}$ (Angle in a same segment)
Therefore $\angle \mathrm{PBQ}=48^{\circ}$
(iv) Let radius and height of cylinder is 2 x and 7 x .

Volume of cylinder $=\pi r^{\wedge} 2 h$
$704=\frac{22}{7} \times(2 x)^{2}(7 x)$
$704=\frac{22}{\not \partial} \times 4 x^{2} * \not \partial x$
$704=4 \times 22 x^{3}$
$\frac{204}{22 \times 4}=x^{3}$
$8=x^{3}$
$\therefore x=2$
So Radius $=2 \mathrm{x}$

$$
=2 \times 2
$$

$$
=4 \mathrm{~cm}
$$

height $=7 \mathrm{x}$

$$
\begin{aligned}
& =7 \times 2 \\
& =14 \mathrm{~cm} .
\end{aligned}
$$

Total surface area of cylinder

$$
\begin{aligned}
& =2 \pi r(h+r) \\
& =2 \times \frac{22}{7} \times 4(14+4) \\
& =\frac{44}{7} \times 4(18) \\
& =\frac{3168}{7} \\
& =452.57 \mathrm{~cm}^{2}
\end{aligned}
$$

Q3.
(i) LHS. $\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}$

$$
\frac{\sin \theta\left(1-2 \sin ^{2} \theta\right)}{\cos \left(2 \cos ^{2} \theta-1\right)}
$$

$$
=\frac{\sin \theta(1-2(1-\cot \theta)}{\cos \left(2 \cos ^{2} \theta-1\right)}
$$

$$
=\frac{\sin \theta\left(1-2+2 \cos ^{2} \theta\right)}{\cos \theta\left(2 \cos ^{2} \theta-1\right)}
$$

$$
=\frac{\sin \theta\left(2 \cos ^{2} \theta-1\right)}{\cos \theta\left(2 \cos ^{2} \theta-1\right)}
$$

$$
=\frac{\sin \theta}{\cos \theta}
$$

$$
=\tan \theta \text { (R.H.S.) }
$$

(ii) height $=10 \mathrm{~m}$
length of shadow $10 \sqrt{3} \mathrm{~m}$
Let ' θ ' is angle of elevation

$\tan \theta=\frac{A C}{A B}$
$\tan \theta=\frac{10}{10 \sqrt{3}}$
$\tan \theta=\frac{1}{\sqrt{3}}$
$\tan \theta=\tan 30^{\circ}$
$\theta=30^{\circ}$
Therefore angle of elevation of sun is 30°.
(iii) For the following distribution table mean is 6 .

Variate $\left(x_{i}\right)$	f_{i}	$f_{i} x_{i}$
2	3	6
4	2	8
6	3	18
10	1	10
$\mathrm{p}+5$	2	$2 \mathrm{p}+10$
Total	$\Sigma f_{i}=11$	$52+2 \mathrm{p}=\Sigma f_{i} x_{i}$

mean $=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}$
$6=\frac{52+2 p}{11} \Rightarrow 66=52+2 p$
$66-52=2 \mathrm{p}$
$14=2 p$
$p=\frac{14}{2}$
$p=7$
(iv) Total triangle $=8$ in which 3 blue triangle and 5 red triangle

Total square $=10$ in which Blue square $=6$ and Red square $=4$
Total piece $=10+8=18$
If one piece is lost randomly the probability of a triangle
a) $\quad P(\varepsilon)=\frac{8}{18}$
$=\frac{4}{9}$
b) A square of blue colour
$P(\varepsilon)=\frac{6}{18}$
$P(\varepsilon)=\frac{1}{3}$
c) A triangle of red colour :
$P(\varepsilon)=\frac{5}{18}$
Q4.
(i) mean $=\frac{1+7+5+3+4+4}{6} \quad($ mean $=m)$
$m=\frac{24}{6}$
$m=4$
and mean of $3,2,4,2,3,3, \mathrm{P}$ is $(m-1)$
mean $=\frac{3+2+4+2+3+3+P}{7}$
$(\mathrm{m}-1)=\frac{17+P}{7}$
$4-1=\frac{17+P}{7}$
$3=\frac{17+P}{7}$
$21=17+\mathrm{P}$
$21-17=\mathrm{P}$
$4=\mathrm{P}$
For median : arrange in ascending order
2, 2, 3, 3, 3, 4, 4
$n=7$ (odd)
median $=\left(\frac{n+1}{2}\right)^{\text {th }}$ term
median $=\left(\frac{7+1}{2}\right)^{\text {th }}$
$\mathrm{q}=\left(\frac{8}{2}\right)^{\text {th }}$
$\mathrm{q}=4^{\text {th }}$ term
$\mathrm{q}=3$
Therefore, $\quad \mathrm{P}=4$ and $\mathrm{q}=3$
(ii) Let radius $=r$, and $h=25 \mathrm{~cm}$ (Given)
(a) The circumference of base is 132 .

$$
\begin{aligned}
& 2 \pi r=132 \\
& 2 \times \frac{22}{7} \times r=132 \\
& r=\frac{132 \times 7}{22 \times 2} \\
& r=21 \mathrm{~cm} .
\end{aligned}
$$

(b) Volume of cylinder $=\pi r^{\wedge} 2 h$

$$
\begin{aligned}
& =\frac{22}{7} \times(21)^{2} \times 25 \\
& =\frac{22}{7} \times 21 \times 21 \times 25 \\
& =22 \times 3 \times 21 \times 5 \\
& =34650 \mathrm{~cm}^{3}
\end{aligned}
$$

(iii) For cone:

Radius OP = 7 cm
Height $\mathrm{OQ}=12 \mathrm{~cm}$
For cylinder
Radius = half of radius of cone

$$
\begin{aligned}
& =\frac{1}{2} \times 7 \\
\mathrm{R}_{\text {cylinder }} & =\frac{7}{2}
\end{aligned}
$$

and height of cylinder $=\frac{1}{2} \times h$

If cylinder of radius $\frac{7}{2}$ and height 6 cm . is drilled out from cone, remaining volume
$=$ Volume of cone - volume of cylinder
$=\frac{1}{3} \pi r_{1}^{2} h_{1}-\pi r_{2}^{2} h_{2}$
$=\frac{1}{3} \times \frac{22}{7} \times(7)^{2} \times 12-\frac{22}{7} \times\left(\frac{7}{2}\right)^{2} \times 6$
$=\frac{1}{3} \times \frac{22}{7} \times 7 \times 7 \times 12-\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 6$
$=22 \times 7 \times 4-\frac{22 \times 7 \times 7}{2}$
$=616-11 \times 7 \times 3$
$=616-231$
$=385 \mathrm{~cm}^{3}$
(iv) We have :
$\frac{4}{3}\left(\sec ^{2} 59-\cot ^{2} 31\right)-\frac{2}{3} \sin 90^{\circ}+3 \tan ^{2} 56 \cdot \tan ^{2} 34=\frac{x}{3}$
$\frac{4}{3}\left(\sec ^{2} 59-\cot ^{2}(90-59)-\frac{2}{3} \times 1+3 \tan ^{2} 56 \cdot \tan ^{2}(90-56)=\frac{x}{3}\right.$
$\frac{4}{3}\left(\sec ^{2} 59-\tan ^{2} 59\right)-\frac{2}{3}+3 \tan ^{2} 56 \cot ^{2} 56=\frac{x}{3}$
$\frac{4}{3}(1)-\frac{2}{3}+3=\frac{x}{3}$
$\frac{4}{3}-\frac{2}{3}+3=\frac{x}{3}$
$\frac{4-2}{3}+3=\frac{x}{3}$
$\frac{2}{3}+3=\frac{x}{3}$
$\frac{2+9}{3}=\frac{x}{3}$
$\frac{11}{3}=\frac{x}{3}$
$\mathrm{x}=11$

Q5.
(i)

And two boats are at C and D and angle of depression are 60° and 30° respectively.
Let 'a' is distance between two boats
In $\triangle \mathrm{ABC}$

$$
\begin{aligned}
& \tan 60=\frac{A B}{A C} \\
& \begin{aligned}
& \sqrt{3}=\frac{150}{b} \\
& b=\frac{150}{\sqrt{3}}=\frac{150}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{7}} \\
&=\frac{150 \sqrt{3}}{3}
\end{aligned}
\end{aligned}
$$

$b=150 \sqrt{3}$
In \triangle DAB.
$\tan 30^{\circ}=\frac{A B}{A D}$
$\frac{1}{\sqrt{3}}=\frac{150}{A C+C D}$
$\frac{1}{\sqrt{3}}=\frac{150}{b+a}$
$a+b=150 \sqrt{3}$
$a=150 \sqrt{3}-50 \sqrt{3}$
$a=100 \sqrt{3}$
$a=100 \times 1.732$
$a=173.2 \mathrm{~m}$
Therefore the distance between two boats are 173.2 m
(ii) Total marbles in a jar $=24$

Let ' x ' are green and $(24-x)$ are blue.
Probability of green $=\frac{x}{24}$
and $\mathrm{P}(\mathrm{G})=\frac{2}{3}$
$\frac{2}{3}=\frac{x}{24}$
$x=\frac{24 \times 2}{3}$
$x=16$
So the number of blue balls $=24-16$

$$
=8
$$

(iii) Histogram

(iv) If $\tan \theta+\sec \theta=1$
$\because \quad \sec ^{2} \theta-\tan ^{2} \theta=1$
$(\sec \theta+\tan \theta)(\sec \theta-\tan \theta)=1$
$\ell(\sec \theta-\tan \theta)=1$
$\sec \theta-\tan \theta=\frac{1}{\ell}$
Add (1) + (2)
$\sec \theta+\tan \theta=\ell$
$\sec \theta-\tan \theta=\frac{1}{\ell}$
$2 \sec \theta=\ell+\frac{1}{\ell}$
$2 \sec \theta=\frac{1+\ell^{2}}{\ell}$
$\sec \theta=\frac{1+\ell^{2}}{\ell * 2}$
Hence prove

Q6.
(i) In the given figure
$\angle \mathrm{BDC}=\angle \mathrm{CDB}=20^{\circ} \quad$ (angle in same segment are equal)

and $\angle \mathrm{DMC}=90^{\circ}$
In Δ DMC,
$20+90+\mathrm{x}=180^{\circ}$
$110+x=180$
$\mathrm{x}=180-110$
$\mathrm{x}=70^{\circ}$
(ii) Given that (a, 2a) line on the line $\frac{y}{2}=3 x-6$, which satisfies the given equator.
$\frac{y}{2}=3 x-6$
$\frac{2 \mathrm{a}}{2}=3 \times \mathrm{a}-6$
$a=3 a-6$
$6=3 a-a$
$6=2 \mathrm{a}$
$\mathrm{a}=\frac{6}{2}=3$
Therefore the value of a is 3 .
(iii) The equation is parallel to the line joining the point
$\mathrm{A}(7,-1)$ and $\mathrm{B}(0,3)$
$x_{1} y_{1} \quad x_{2} y_{2}$
slope of line $\quad A B=\frac{y_{2}-y_{1}}{x_{2}-x_{4}}$
$m=\frac{3-(-1)}{0-7}$
$m=\frac{3+1}{-7}$
$m=-\frac{4}{7}$
and if two lines are parallel then their slope are also equal so the slope of required line is also $\frac{-3}{7}$
So the equation of line passing through
$\mathrm{P}(-5,1)$ having slope $\frac{-3}{7}$ is
$y-y_{1}=m\left(x-x_{1}\right)$
$y-1=\frac{-4}{7}(x-(-5))$
$y-1=\frac{-4}{7}(x+5)$
$7(y-1)=-4 x-20$
$7 y-7=-4 x-20$
$7 y-7=-4 x-20$
$4 x-7 y-7+20=0$
$4 x-7 y+13=1$
(iv)

$C I$	$f i$	C.F
$0-10$	5	5
$10-20$	10	15
$20-30$	11	26
$30-40$	20	46
$40-50$	27	73
$50-60$	38	111
$60-70$	40	151
$70-80$	29	180

Taking $1 \mathrm{~cm}=10$ marks -x -axis and
$1 \mathrm{~cm}=20$ students on y -axis
Plot the points $(10,5),(20,15),(30,26),(40,46),(50,73),(60,111),(70,151),(80,180)$.

Here $n=180$
(i) Lower quartile $=\frac{n}{4}$

$$
\begin{aligned}
& =\frac{180}{4} \\
& =45
\end{aligned}
$$

Through B, draw a horizontal line to meet the ogive at Q . Through Q , draw a vertical line to meet the x -axis at N . at 39
so lower quartile $=39$ marks.
(ii) Upper quartile $=\frac{3 n}{4}$

$$
\begin{aligned}
& =\frac{3 \times 45}{4} \\
& =3 \times 45 \\
& =135
\end{aligned}
$$

Through A draw a line to meet the ogive at P , through P draw a line vertical to met the x axis at M at 64 .
So upper quartile is $=64$

